Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Epitaxial Growth of High Quality Nonpolar InN Films on LiGaO2 Substrates

Identifieur interne : 000866 ( Chine/Analysis ); précédent : 000865; suivant : 000867

Epitaxial Growth of High Quality Nonpolar InN Films on LiGaO2 Substrates

Auteurs : RBID : Pascal:11-0496280

Descripteurs français

English descriptors

Abstract

A new system for obtaining high quality nonpolar InN films has been demonstrated. It is found that a-plane InN epitaxially grows on LiGaO2 (001) with high phase purity and smooth surface. The in-plane epitaxial relationships are InN [0001] LiGaO2 [100], and InN [11?00],// LiGaO2 [010]. The interface between the substrate and a-plane InN is atomically abrupt. The threading dislocation density drops dramatically from 2×1010 cm-2 of its initial growth stage to 3×10 cm-2 when the InN film thickness reaches 30 nm. which we believe is driven by dislocation merging or annihilation near the nucleation layer. The band edge emission from its photoluminescence spectra of as-grown a-plane InN is located at 0.72 eV. This novel high quality nonpolar a-plane InN on a LiGaO, (001) system opens up a new possibility for high-efficiency nonpolar InN devices.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0496280

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Epitaxial Growth of High Quality Nonpolar InN Films on LiGaO
<sub>2</sub>
Substrates</title>
<author>
<name>GUOQIANG LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>College of Materials Science and Engineering, Southern China University of Technology</s1>
<s2>Guangdong 510641</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangdong 510641</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Materials, University of Oxford, Parks Road</s1>
<s2>Oxford OX1 3PH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Oxford OX1 3PH</wicri:noRegion>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name>HUI YANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>College of Materials Science and Engineering, Southern China University of Technology</s1>
<s2>Guangdong 510641</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangdong 510641</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0496280</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0496280 INIST</idno>
<idno type="RBID">Pascal:11-0496280</idno>
<idno type="wicri:Area/Main/Corpus">002581</idno>
<idno type="wicri:Area/Main/Repository">002F50</idno>
<idno type="wicri:Area/Chine/Extraction">000866</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1528-7483</idno>
<title level="j" type="abbreviated">Cryst. growth des.</title>
<title level="j" type="main">Crystal growth & design</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dislocation density</term>
<term>Epitaxial layers</term>
<term>Epitaxy</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>Indium nitride</term>
<term>Interfaces</term>
<term>Layer thickness</term>
<term>Nucleation</term>
<term>Photoluminescence</term>
<term>Surface states</term>
<term>Thin films</term>
<term>Threading dislocation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Epitaxie</term>
<term>Couche épitaxique</term>
<term>Mécanisme croissance</term>
<term>Composé III-V</term>
<term>Couche mince</term>
<term>Etat surface</term>
<term>Interface</term>
<term>Dislocation filetée</term>
<term>Densité dislocation</term>
<term>Epaisseur couche</term>
<term>Nucléation</term>
<term>Photoluminescence</term>
<term>Nitrure d'indium</term>
<term>InN</term>
<term>Substrat LiGaO2</term>
<term>LiGaO2</term>
<term>8110A</term>
<term>6172L</term>
<term>6855J</term>
<term>6460Q</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A new system for obtaining high quality nonpolar InN films has been demonstrated. It is found that a-plane InN epitaxially grows on LiGaO
<sub>2</sub>
(001) with high phase purity and smooth surface. The in-plane epitaxial relationships are InN [0001] LiGaO
<sub>2</sub>
[100], and InN [11?00],// LiGaO
<sub>2</sub>
[010]. The interface between the substrate and a-plane InN is atomically abrupt. The threading dislocation density drops dramatically from 2×10
<sup>10 </sup>
cm
<sup>-2 </sup>
of its initial growth stage to 3×10 cm
<sup>-2 </sup>
when the InN film thickness reaches 30 nm. which we believe is driven by dislocation merging or annihilation near the nucleation layer. The band edge emission from its photoluminescence spectra of as-grown a-plane InN is located at 0.72 eV. This novel high quality nonpolar a-plane InN on a LiGaO, (001) system opens up a new possibility for high-efficiency nonpolar InN devices.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1528-7483</s0>
</fA01>
<fA03 i2="1">
<s0>Cryst. growth des.</s0>
</fA03>
<fA05>
<s2>11</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Epitaxial Growth of High Quality Nonpolar InN Films on LiGaO
<sub>2</sub>
Substrates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GUOQIANG LI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HUI YANG</s1>
</fA11>
<fA14 i1="01">
<s1>College of Materials Science and Engineering, Southern China University of Technology</s1>
<s2>Guangdong 510641</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials, University of Oxford, Parks Road</s1>
<s2>Oxford OX1 3PH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>664-667</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27261</s2>
<s5>354000193719060040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0496280</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Crystal growth & design</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A new system for obtaining high quality nonpolar InN films has been demonstrated. It is found that a-plane InN epitaxially grows on LiGaO
<sub>2</sub>
(001) with high phase purity and smooth surface. The in-plane epitaxial relationships are InN [0001] LiGaO
<sub>2</sub>
[100], and InN [11?00],// LiGaO
<sub>2</sub>
[010]. The interface between the substrate and a-plane InN is atomically abrupt. The threading dislocation density drops dramatically from 2×10
<sup>10 </sup>
cm
<sup>-2 </sup>
of its initial growth stage to 3×10 cm
<sup>-2 </sup>
when the InN film thickness reaches 30 nm. which we believe is driven by dislocation merging or annihilation near the nucleation layer. The band edge emission from its photoluminescence spectra of as-grown a-plane InN is located at 0.72 eV. This novel high quality nonpolar a-plane InN on a LiGaO, (001) system opens up a new possibility for high-efficiency nonpolar InN devices.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A72L</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60D60Q</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Epitaxie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Epitaxy</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etat surface</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Surface states</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Interface</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dislocation filetée</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Threading dislocation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Dislocación aterrajada</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Densité dislocation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Dislocation density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Nucléation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nucleation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Substrat LiGaO2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>LiGaO2</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>6172L</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>6460Q</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>346</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000866 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000866 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0496280
   |texte=   Epitaxial Growth of High Quality Nonpolar InN Films on LiGaO2 Substrates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024